The importance of Aura MLS
to understanding
stratospheric water vapor

A. E. Dessler

Dept. of Atmospheric Sciences

Texas A&M University




stratosphere/overworld

185 km

(h)
tropopause ===

..........
17
17177177

i

Fueglistaler et al., 2009: The tropical tropopause layer, Rev. Geophys., 47, RG1004, doi:
10.1029/2008RG000267.



19 km

16.5 km

14.5 km

400 K

380 K

355K

Tropopause




19 km 400 K

16.5 km| 380 K

14.5 km| 355 K




400 K

380 K

355K



400 K

cold temperature
generate clouds

380 K

355K



400 K

380 K

355K

Q sedimentation of clouds
dehydrates the TTL



400 K

380 K

355K

O

sedimentation of clouds
dehydrates the TTL

cold trap



400 K

380 K

355K



Aura advances in
stratospheric water vapor

» Large-scale temperatures & transport

* Microphysics & unresolved temperature
fluctuations

« Convection
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monthly avg. MLS V4, tropical average (25N-25S)
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monthly avg. MLS V4 vs. trajectory models

H20 anomaly at 100 hPa
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combined HALOE+Aura MLS H20 data set
60N-60S, 83 hPa, monthly ano_malies
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Yulaeva et al., JAS, 1994
Randel et al., JGR, 2006
Dhomse et al., ACP, 2008




Enhanced

Yulaeva et al., JAS, 1994
Randel et al., JGR, 2006

Dhomse et al., ACP, 2008 (b)
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Multivariate linear least-squares fit:
e H20*=aQBO +bBD + c AT +r

Dessler et al., PNAS, 2013 17 L@L@I



Multivariate linear least-squares fit:

e H20*=aQBO +bBD + c AT +r
e QBO =QBO index
e BD = tropical avg. 82-hPa heating rate anomaly

* AT = tropical tropospheric temperature anomaly

Dessler et al., PNAS, 2013 17 @M



water vapor anomalies

Dessler et al., JGR 2014
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Contribution of different processes to changes in tropical lower-stratospheric water vapor in
chemistry-climate models
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Abstract. Variations in tropical lower-stratospheric humidity influence both the chemistry and climate of the atmosphere. We analyze tropical
lower-stratospheric water vapor in 21st century simulations from 12 state-of-the-art chemistry-climate models (CCMs), using a linear
regression model to determine the factors driving the trends and variability. Within CCMs, warming of the troposphere primarily drives the
long-term trend in stratospheric humidity. This is partially offset in most CCMs by an increase in the strength of the Brewer-Dobson
circulation, which tends to cool the tropical tropopause layer (TTL). We also apply the regression model to individual decades from the 21st
century CCM runs and compare them to a regression of a decade of observations. Many of the CCMs, but not all, compare well with these
observations, lending credibility to their predictions. One notable deficiency is that most CCMs underestimate the impact of the quasi-biennial
oscillation on lower-stratospheric water vapor. Our analysis provides a new and potentially superior way to evaluate model trends in lower-
stratospheric humidity.
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trajectory model + cloud model
change nucleation RH
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trajectory model + cloud model
change nucleation RH
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trajectory model + cloud model
unresolved change gravity waves
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trajectory model + cloud model
unresolved change gravity waves
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trajectory model + cloud model
change nucleation RH
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trajectory model + cloud model
change nucleation RH
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iInterannual variability in convection drives small
changes in 100-hPa water vapor
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Effects of convective ice evaporation on interannual variability of tropical tropopause layer
water vapor
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Abstract Back to top

Water vapor interannual variability in the tropical tropopause layer (TTL) is investigated using satellite observations and model simulations.

We break down the influences of the Brewer-Dobson circulation (BDC), the quasi-biennial oscillation (QBO), and the tropospheric

temperature (A7) on TTL water vapor as a function of latitude and longitude using a two-dimensional multivariate linear regression. This

allows us to examine the spatial distribution of the impact of each process on TTL water vapor. In agreement with expectations, we find that

the impacts from the BDC and QBO act on TTL water vapor by changing TTL temperature. For AT, we find that TTL temperatures alone cannot

explain the influence. We hypothesize a moistening role for the evaporation of convective ice from increased deep convection as the

troposphere warms. Tests using a chemistry-climate model, the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), 27
support this hypothesis.
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Impact of convectively lofted ice on the seasonal cycle of tropical [ Review status

lower stratospheric water vapor This discussion paper is a preprint. It
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Abstract. We use a forward Lagrangian trajectory model to diagnose mechanisms that produce the tropical lower stratospheric (LS) water
vapor seasonal cycle observed by the Microwave Limb Sounder (MLS) and reproduced by the Goddard Earth Observing System Chemistry
Climate Model (GEOSCCM) in the tropical tropopause layer (TTL). We confirm in both the MLS and GEOSCCM that the seasonal cycle of water
vapor is primarily determined by the seasonal cycle of TTL temperatures. However, we find that the seasonal cycle of temperature predicts a
smaller seasonal cycle of LS water vapor between 10° N-40° N than observed by MLS. We show that including evaporation of convectively
lofted ice in the trajectory model increases the simulated maximum value in the 10° N-40° N water vapor seasonal cycle by 1.9 ppmv (47 %)
and increases the seasonal amplitude by 1.26 ppmv (123 %), which improves the prediction of LS water vapor annual cycle. We conclude that
the moistening effect from convective ice evaporation in the TTL plays a key role regulating and maintaining the tropical LS water vapor
seasonal cycle. Most of the convective moistening in the 10° N-40° N range comes from convective ice evaporation occurring at the same
latitudes. A small contribution to the moistening comes from convective ice evaporation occurring between 10° S-10° N. Within 10° N-40°N,
the Asian monsoon region is the most important region for convective ice evaporation and convective moistening during boreal summer and
autumn.
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tropical lower stratospheric water vapor, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-302, in review, 2019.
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MLS observations standard trajectory model
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GEOSCCM standard trajectory
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Conclusions

Aura’s measurements have greatly
improved our understanding of the TTL

Large-scale temperatures & transport
are primary regulator of stratospheric
humidity

Microphysics increases humidity by =1
ppmv (~25%)

Convection not too important, but could

be regionally important in the lower
stratosphere




